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Discrete atomistic model to simulate etching of a crystalline solid
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A discrete atomistic solid-on-solid model is proposed to describe dissolution of a crystalline solid by a
liquid. The model is based on the simple assumption that the probability per unit time of a unit cell being
removed is proportional to its exposed area. Numerical simulations in one dimension demonstrate that the
model has very good scaling properties. After removal of only about 102 monolayers, independently of the
substrate size, the etched surface shows almost time-independent short-range correlations and the receding
surface presents the Family-Vicsek scaling behavior. The scaling parametersa50.49160.002 andb50.330
60.001 indicate that the system belongs to the Kardar-Parisi-Zhang universality class. The imposition of
periodic boundary conditions on the simulations reduces the effective system size by a factor of 0.68 without
changing the exponentsa andb. Surprisingly, the periodic condition changes drastically the statistics of the
surface height fluctuations and the short-range correlations. Without periodic conditions, that statistics is, up to
3 standard deviations, an asymmetric Le´vy distribution with m51.8260.01, and outside this region the
statistics is Gaussian. With periodic conditions, that statistics is Gaussian, except for large negative fluctua-
tions.
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I. INTRODUCTION

In the last 15 years there has been intensive researc
far from equilibrium moving surfaces@1–3#. Those surfaces
can be related to expanding fire, fluid flowing in a poro
media, growing bacteria colonies, growth of colloidal agg
gates, epitaxial growth of crystalline solids on a flat su
strate, or etching of a crystalline solid by a liquid, a gas
plasma, or a bean of atomic ions~sputtering!, and others. It is
well established that many of those moving surfaces h
self-affine morphologies with simple space and time sca
properties. The morphology of the surface is more ea
described in the case of epitaxial growth on an initially fl
horizontal substrate of dimensionalityd and linear dimension
L. The vertical position of the grown film surface at th
horizontal coordinater , elapsed a timet after the growth
start, ish(r ,t). The roughness of the surface is measured
the rms deviation of the surface height,w(L,t)5^@h(r ,t)
2h̄(t)#2&1/2, whereh̄(t) is the average film thickness. For
large class or growing systems, the roughness kinetics sa
the Family-Vicsek scaling ansatz@4#

w~L,t !5La f ~ t/La/b!, ~1!

where the functionf (u) has the limiting behaviorf (u)
;ub for u!1 and f (u)5constant foru@1. Therefore, for
t!t35Ct3

La/b, w5Cwtb, and for t@t3 , ws5Cws
La,

where the subscripts in w stands for saturated.
Theoretically, the growth kinetics has been widely d

scribed by continuum Langevin equations of the type
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5n“2h1l~“h!21•••1nn“

2nh1k~“2h!~“h!2

1•••1kk j~“
2kh!~“h!2 j1F1h~r ,t !, ~2!

wheren, k, and j are positive integers,F is the average par
ticle flux on the substrate, andh(r ,t) is an uncorrelated
noise. This family of equations leads to the scaling expres
by Eq. ~1!, and the exponentsa andb depend on the coef
ficients n, l, nn , k, andkk j , which have a nonzero value
the F andh terms are of course always present. Thus, e
equation of the family defines one universality class of mo
ing surfaces, each family presenting well-defined values
a andb. The most important universality classes are defin
by the Edwards-Wilkinson~EW! equation@5#, which con-
tains only the“2h surface tension term in Eq.~2!, and the
Kardar-Parisi-Zhang~KPZ! equation@6# which also contains
the nonlinear term (“h)2.

A very large number of discrete atomistic models for n
merical simulation of the moving surfaces has also been p
posed, and many of them demonstrated to present
Family-Vicsek scaling. Some of these are very simple m
els intended not to describe in detail any specific system,
to demonstrate on a microscopic basis the generation
self-affine moving surface. The most widely investigat
atomistic models are the ballistic deposition~BD! @7# and
extensions of the random deposition model, which allow p
ticle diffusion, as for example the Wolf-Villain~WV! model
@8# ~for reviews, see@1,2#!. Those models present some cha
acteristics that limit their usefulness in the investigation
surface morphology. The BD model generates films with
cancies and overhangs that create difficulties for the anal
of the film; not only the film surface but also its body a
fractal systems, and it is also difficult to define univocally t
r,
©2001 The American Physical Society13-1
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MELLO, CHAVES, AND OLIVEIRA PHYSICAL REVIEW E 63 041113
film surface. The WV model belongs to the solid-on-so
models free from vacancies and overhangs. However,
known @9,10# that the generated films present anomalo
scaling, in the sense that before the deposition of rather t
films @up to 106 monolayers~ML ! for the d51 case#, the
system does not satisfy the scaling law given by Eq.~1!.
Thus, calculation of the correcta and b scaling exponents
requires simulation with very large substrates and the gro
of thick films.

In this paper we propose a simple atomistic model
dissolution that mimics the etching of a crystalline solid by
liquid. The numerical simulations for thed51 dimensional-
ity indicate that the model belongs to the KPZ universa
class. The calculations demonstrate that the model pres
exceptionally good scaling properties. After a transient
only about 20 dissolved monolayers, independently of
substrate sizeL, the receding surface satisfies the Fami
Vicsek scaling, and hence the scaling properties and the
rect scaling exponents can be obtained from calculations
rather small substrates.

We also investigated the statistics of the surface he
fluctuations, expressed byP(Dhi), whereDhi is the differ-
ence between the height at sitei and the average heighth̄(t).
For t!t35Ct3

La/b, P(Dhi) is a Gaussian distribution

However, the statistics present a crossover att5t3 . For t
@t3 , P(Dhi) can be fitted, within the accuracy of the da
by an asymmetric Le´vy distribution in the rather wide rang
uDhi u,3ws and is approximately a Gaussian outside t
range of fluctuations. We argue in this paper that this as
metry in the surface fluctuation should be true for any mo
belonging to the KPZ universality class, as well as oth
classes in which nonlinear terms like (“h)2 j appear in
Eq. ~2!.

The investigation ofP(Dhi) also uncovered the as ye
unnoticed fact that the morphology of the surface is sensi
to the boundary conditions in quite a surprising way:
surfaces simulated using periodic boundary conditio
~PBC! P(Dhi) is quite precisely a Gaussian distribution, e
cept for large negative values ofDhi . As there is no physica
reason for imposing PBC on the simulation, we consider
valid the results obtained with nonperiodic boundary con
tions ~NBC!.

II. MODEL AND SIMULATION

The substrate is a square lattice with a one-dimensio
surface exposed to dissolution. The model states that
probability per unit time of a unit cell being removed
proportional to its number of free sides. This can be justifi
by the fact that the number of collisions per unit time that
solvent molecules make with one cell is proportional to
exposed area. It is also supposed that the solution rem
sufficiently diluted and hence readsorption is ignored. It m
be recognized that the model cannot accurately describe
etching because it ignores the fact that the energy neces
to remove a cell also depends on the number of free sid

Another model for crystal dissolution had been propos
@11# in which the probability per unit time of a cell bein
removed is proportional to exp(2nw), wheren is the number
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of the cell’s nearest neighbors andw is a model parameter
This model emphasizes the dependence of the binding
ergy of the cell with the number of nearest neighbors. T
referred model changes its universality class as the param
w varies and also present overhangs. A physically more
alistic model would be a combination of these two. Howev
that hypothetical model would present the complicated s
ing properties arising from the exp(2nw) dependence. At the
present stage of the investigation of growth dissolution p
cesses the emphasis still is on models with simple sca
properties, in order to understand the most general laws g
erning those processes.

The cellular automata algorithm that simulates this mo
is

~1! select randomly one horizontal sitei 51,2, . . . ,L at
discrete instantT;

~2! hi(T11)5hi(T)11;
~3! if hi 21(T),hi(T) do hi 21(T11)5hi(T);
~4! if hi 11(T),hi(T) do hi 11(T11)5hi(T).

When PBC is not imposed, i.e., in the case of NBC, t
existence of the external~vertical! exposed faces of the cell
at the borders is ignored. In this case, step 3 is not exec
when i 51 and step 4 is not executed wheni 5L. Therefore,
the system acts as if the end vertical surfaces of the subs
were covered with a protection to avoid lateral etching.
must be noticed that the substrate is etched upwards, w
makes easier the analogy with the more widely stud
growth kinetics.

Calculations were performed up tot520t3 , where t
5T/L, which means deep inside the saturation regime,
substrate sizesL 5 128, 256, 512, 1024, 2048, 4096, an
8192. Satisfactory data on the tails of the distributio
P(Dhi) were obtained by performing simulations over, r
spectively, 13106, 1.23106, 2.63105, 7.13104,
1.63104, 3.73103, and 93102 substrates for PBC and
3.93106, 1.53106, 3.23105, 7.13104, 23104, 3.43103,
and 93102 substrates for NBC. Calculations were also p
formed on a large substrate with dimensionL5131 072, in
the regimet!t3 , to obtain a more precise determination
the exponentb. We used a long period (.231018) random
number generator of L’Ecuyer with Bays-Durham shuf
and added safeguards~ran2 of Ref. @12#!.

III. SHORT-RANGE CORRELATIONS

Figure 1~a! shows the time evolution of the average st
size a(t)5^uhi(t)2hi 21(t)u& and the rms step sizearms(t)
5^@hi(t)2hi 21(t)#2&1/2, for simulations with PBC and sev
eral substrate sizes. The figure shows that botha(t) and
arms(t) are almost independent of the substrate size and
after t'102 those two functions saturate at constant valu
This means that the surface fluctuations quickly builds
short-range correlations that remain unchanged while p
gressively the correlation length grows up with time un
becoming equal toL. This behavior is considered importan
for the quick establishment of the Family-Vicsek scaling la
@9–11,13#. The average step size works as a natural unit
the surface height fluctuations, and aftera(t) saturates at a
constant value, the functionh(r ,t) is expected to satisfy a
3-2
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DISCRETE ATOMISTIC MODEL TO SIMULATE . . . PHYSICAL REVIEW E 63 041113
dynamical equation like Eq.~2! in which the coefficientsn,
l, nn , etc., are time independent. For comparison, in
WV model, arms(t) depends on the substrate size and foL
.200 that step size remains increasing untilt>106 @9#.

Figure 1~b! shows the same time evolution of the st
sizes shown in Fig. 1~a!, but for calculations with NBC. One
sees that the time evolution ofa(t) is almost the same fo
both kinds of boundary conditions. However, now the ev
lution of arms(t) shows a distinct behavior. Its saturatio
value is 16% higher than in the case of PBC, and besides
saturation only occurs at later times. In fact, for large s
strates, one can observe thatarms(t) presents a pseudosat
ration at the same value observed for simulations with PB
indicated in the figure by a dotted line, at the same timt
'102, and later on gains a new step. As will be seen in S
V, the change ofarms(t) from the dotted line level to a highe

FIG. 1. Step size measured bya(t) andarms(t) for simulations
with ~a! periodic boundary conditions and~b! nonperiodic boundary
conditions. The horizontal dotted line is the saturation va
(1.82660.001) ofarms for simulations with periodic boundary con
dition.
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value is related to a change in the statistics of the surf
height fluctuation, which is initially Gaussian and later o
becomes of Le´vy type. The true saturation ofarms(t) only
occurs att5t3 , obtained as described in the next sectio
This indicates that the absence of PBC allows some la
and rare big steps that affects the value ofarms(t) but have
little influence ona(t), which is a signature of the Le´vy
distribution of surface height fluctuations. Figure 2 shows
same data of Fig. 1~b! as a function of the reduced timet/t3 ,
to show explicitly thatarms(t) only saturates att5t3 .

It is usually accepted that the Family-Vicsek behavior o
curs only after the short-range correlation has been es
lished. However this is not true, as can be seen by compa
Fig. 1~b! and Fig. 3~a!. Those figures show that the Family
Vicsek behavior starts when the step size reaches the p
dosaturation value. This happens because the transition
the pseudosaturation value to saturation value occurs a
same crossover timet3 that governs the global behavior. Th
boundary-condition influence in the small range correlat
is an unexpected result.

IV. SCALING LAWS

Figures 3~a! and 3~b! show in log-log plots the time evo
lution of the surface roughnessw(L,t) for simulations with
NBC and PBC, respectively. A careful examination of tho
figures shows that PBC results in earlier roughness sat
tion, as compared to NBC. This occurs because the imp
tion of PBC is in some sense equivalent to a reduction of
substrate sizeL. This can be clearly observed by comparis
of Figs. 3~a! and 3~b!. The figures also show that the scalin
behaviorw(L,t)5Cwtb only applies fort.10 ~etching of
about 20 ML!. For a more precise determination ofb, only
the data of theL5131 072 substrate were considered and
obtained value was 0.33060.001. Figure 4 shows in a log
log plot the time evolution of the reduced widthw(L,t)/ws
with the reduced timet/t3 , for simulations with NBC.

Figure 5 shows in a log-log plot the variation with th
substrate size of the saturated roughness, for simulations
ing both PBC and NBC. The exponenta was calculated

e

FIG. 2. Thearms(t) step size of Fig. 1~b! expressed as function
of the reduced timet/t3 . The figure shows that the crossover fro
the pseudosaturation value ofarms(t) to the true saturation value
occurs att3 .
3-3
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MELLO, CHAVES, AND OLIVEIRA PHYSICAL REVIEW E 63 041113
from the slope of both curves in Fig. 5, using only the su
strates withL larger than 1000, with the resultsa50.4961
60.0003 for PBC anda50.49160.002 for NBC. We point
out that the obtained values ofa and b are very close to
those calculated for thed51 KPZ equation, namely,a
51/2 andb51/3. In fact, to our knowledge, this is the be
agreement with the KPZ equation ever obtained from
atomic discrete model. This indicates that the present mo
for wet etching belongs to the KPZ universality class. Figu
5 shows with more clarity the fact previously noticed that t
imposition of PBC implies the reduction of the effective su
strate size, as the two straight lines have almost the s
slope and therefore can be brought to coincidence~superpo-
sition! by a vertical translation. More explicitly, the line co
responding to simulation with NBC will coincide with tha
corresponding to simulation with PBC if the correspondi

FIG. 3. ~a! Time dependence of the roughness of substrates
nonperiodic boundary conditions. The straight line is the roughn
growth law obtained from the 131 072 substrate between time3

and 105. The power law is (1.38460.008)t0.33060.001. ~b! Same as
~a! for periodic boundary conditions.
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values ofws are multiplied by 0.829. This is equivalent t
reducing the substrate size in simulations with PBC:LPBC
50.829a/bLNBC50.68LNBC. Our calculations with the data
of Fig. 3~a! and 3~b! also show that the crossover timet3

5Ct3
La/b is reduced by a factor of 0.567 when the PBC

imposed. Hence, we should expect that the imposition
PBC implies a reduction ofL by a factor of 0.68, in very
good agreement with the factor of 0.68 previously obtain

Figure 6 shows in a log-log plot the structure factor

S~k,t !5^h̃~k,t !h̃~2k,t !&, ~3!

where

h̃~k,t !5L21/2(
j 51

L

@hj~ t !2h̄~ t !#ei ( jk), ~4!

for t@t3 , and simulations with NBC. It is known@10# that,
for this saturated regime,

S~k,t !}k22a2d. ~5!

However, for discrete systems with unit-cell sizea, this
relation cannot be valid for wave vectors close to the B

th
ss
0

FIG. 4. Universality curves obtained by renormalizing Fig. 3~a!.

FIG. 5. Length dependence of saturated roughness. The po
law was obtained from the substrates larger than 103. For periodic
conditions it is (0.474060.0013)L0.496160.0003, and for nonperiodic
it is (0.59460.008)L0.49160.002.
3-4
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DISCRETE ATOMISTIC MODEL TO SIMULATE . . . PHYSICAL REVIEW E 63 041113
louin zone boundarykZB5p/a, in the present casekZB
5p. In fact,]S(k,t)/]kuk5p50, as can be observed in Fig
6. The dashed lines in the figure are linear fittings of
three smallest wave vectors of each curve. All these stra
lines have the same slope2g8521.6560.05. Comparing
this with Eq. ~5! for the cased51, we obtaina50.325
60.025, in clear disagreement with the value ofa obtained
from the scaling lawws5Cws

La. The solid line in Fig. 6 is
a fit of the intermediate region of the curve, ignoring t
bending both at small values ofk and very close tokZB . Its
slope is2g521.9260.02. With this value ofg we obtain
a50.4660.01, in reasonable agreement with the valuea
50.49160.002 obtained from the Family-Vicsek scalin
law. This confirms that for finite and discrete systems,
law expressed by Eq.~5! fails both for very smallk and fork
close to the zone boundary. The deviation for smallk is
really a small-size effect, as can be seen from the exam
tion of the figure; the larger the substrate, the smaller
value of k for which the curve deviates from the sol
straight line. The reasonable agreement between the va
of a determined by those two distinct methods is an in
pendent indication that the present model does not pre
anomalous scaling@10#.

V. STATISTICS OF THE SURFACE HEIGHT
FLUCTUATIONS

As compared to the very intensive investigation of t
scaling behavior of the moving surface, there has been v
little study of the fluctuations of the surface height. In fa
the existing studies were motivated by experiments dem
strating very large values ofa andb. Experiments on fluid
flow in porous media@14# give a'0.81 andb'0.625, and

FIG. 6. Structure factor for different substrates, for simulatio
with NBC. The results for simulations with PBC are visually n
very different. The solid line is a power law with exponents21.92
60.02, fitted in the range 0.05<k<0.1. The dashed lines hav
exponents21.6560.05 and was fitted to the three first points
each curve, the upper forL54096.
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from these values one obtainsa1a/b'2.1, which indicate
that the system belongs to the KPZ universality class,
which holds the relationa1a/b52. Zhang@15# suggested
that the large values ofa and b can be explained by an
uncorrelated noise obeying a power-law probability distrib
tion P(h);h12z, whereh>1. Both numerical simulations
and analytical results@15–17# gave support to this proposa
For d51 films, the calculated values of the scaling exp
nents are@17# a53/(z11), b53/(2z21), (z.2), anda
5b52/z, (z,2).

We made extensive analysis of the probability distributi
of the surface height fluctuations for the saturated regimt
@t3 . One important conclusion is thatP(Dhi) is sensitive
to the boundary conditions. Figure 7~a! and 7~b! shows, in
linear and semilog plots, respectively,P@Dh/ws(L)# as a
function of Dh/ws(L) ~note that the subscripti in hi was
omitted! in the saturated regime for the simulation with PB
The distributions for all sample sizes fall onto the same u
versal curve that can be fitted quite precisely with a Gau
ian, except for large negativeDh. Figures 8~a! and 8~b!
show the same as Figs. 7~a! and 7~b! for samples simulated
with NBC. It is immediately clear that, in contrast with wh
happens with the samples simulated with PBC, now the s

s

FIG. 7. ~a! Distribution of the saturated surface height fluctu
tion expressed in reduced substrate-size-independent units
simulations with periodic conditions.~b! Same data of~a! in a
semilog plot. The Gaussian distribution is obeyed in the wh
range of height fluctuations. However the probability of large ne
tive height fluctuations is clearly larger than the predictions
Gaussian distribution.
3-5
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MELLO, CHAVES, AND OLIVEIRA PHYSICAL REVIEW E 63 041113
face height distributions fall onto the same universal asy
metric curve. That asymmetry demonstrates that the he
fluctuations do not follow a Gaussian distribution. That is
main result of this paper and will be discussed in some
tail.

Recently @18#, it was shown that a fractional diffusio
equation ~involving fractional derivatives]x

m[]m/]xm, m
fractionary! in an asymmetric medium,]n/]t5(Dl]x

m

1Dr]2x
m )n/2, leads to a particle distribution, which in on

dimension is expressed by

P~x,t !5E
2`

` 1

2p
p~k,t !eikxdk, ~6!

where the characteristic function is

p~k,t !5expF ukmu
2

~Dl1Dr !cosS m
p

2 D t G
3expF ik

ukm21u
2

~Dl2Dr !sinS m
p

2 D t G , ~7!

with 1,m,2. This is an asymmetric Le´vy distribution.

FIG. 8. ~a! Distribution of the saturated surface height fluctu
tion expressed in reduced substrate-size-independent units
simulations without periodic conditions.~b! Same data of~a! in a
semilog plot. The height fluctuations follow an asymmetric Le´vy
distribution for uDh/wsu,3, and an approximately Gaussian dist
bution outside this range. The parameters of the Le´vy distribution
arem51.8260.01 andj520.8060.05.
04111
-
ht
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As the fractional diffusion equation just described is p
dicted to hold in a fractal system, and that is the case of
moving etched surface, we speculate that it can describe
evolution of the stochastic variableDhi(t) in the continuum
limit. The time variable that appears in Eqs.~6! and ~7! ob-
viously does not have any meaning in the analysis of
surface height fluctuation fort@t3 . Hence, we tried to fit
the distributions shown in Figs. 8~a! and 8~b! with the asym-
metric Lévy distribution

P~x!5
A

pE0

`

cos@k~x2x0!1Cjkm tan~mp/2!#

3exp~2Ckm!dk, ~8!

where j5(Dl2Dr)/(Dl1Dr) and x5Dh/ws . Figure 8~a!
shows the result of this fitting for the data plotted in line
scales. The fitting curve is a solid line completely covered
the simulated data, which suggests a very good fitting. Ho
ever, when the same data are exposed in a semilog plo
shown in Fig. 8~b!, it becomes clear that the Le´vy distribu-
tion deviates from the data outside the regionuDh/wsu.3.
The dashed lines shown in both Figs. 8~a! and 8~b! are the
best fit using a Gaussian. One can see that the distant ta
the data distribution can be approximately fitted by a Gau
ian distribution. In fact, in order to have really good agre
ment, we had to use two distinct Gauss functions, one
each tail, but this fitting is not shown and is not relevant
our analysis. We conclude that the not-too-large~up to three
standard deviationsws) surface fluctuations can be de
scribed, within the accuracy of the data, by an asymme
Lévy distribution, whereas the very large surface fluctuatio
follow a Gaussian distribution. The fitting parameters of t
Lévy distribution arem51.8260.01 andj50.8060.05.

Figures 9~a! and 9~b! show, respectively, the time evolu
tion of the parametersm andj as the etching progresses. A
the beginning,m'2, which means that the surface fluctu
tions are Gaussian. This explains why the values ofarms(t)
have the same behavior at early times for both PBC
NBC, as can be seen comparing Figs. 1~a! and 1~b!. For m
very close to 2, the Le´vy distribution is almost insensitive to
the value ofj, and consequently the values of this asymm
try parameter at early times are very imprecise.

We argue that, for any moving active surface belonging
the KPZ universality class, the surface height fluctuatio
must have an asymmetric distribution. In fact, owing to t
nonlinearl(“h)2 term in Eq.~2!, the symmetry of the sur-
face under the transformationh→2h is broken. This means
that the positive (Dh.0) and negative (Dh,0) fluctuations
of the surface height are statistically different. Ifl50, that
surface symmetry is recovered; hence, the positive and n
tive fluctuations of the surface height become statistica
equivalent, and the distributionP(Dh/ws) is expected to be-
come symmetric, either by a symmetric Le´vy distribution
(Dl5Dr) or a Gaussian. On passing, it is opportune to
mark that the Gaussian and Le´vy distributions are the only
invariants of the renormalization-group transformation of t
random-walk distributions@19#. Thus, we conclude that th
moving surfaces belonging to the EW universality class m

for
3-6
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DISCRETE ATOMISTIC MODEL TO SIMULATE . . . PHYSICAL REVIEW E 63 041113
show symmetric distribution of heights fluctuation. Phy
cally, it seems that symmetric surfaces, in which the hills
statistically similar to the valleys, can be obtained only un
very special conditions of growth or erosion. One example
a very asymmetric surface is that obtained by polishin
solid with grinding powder: the polished surface prese
valleys caused by scratches but not the analogous hills.
nonlinear term (“h)2 in the KPZ equation is what distin
guishes hills from valleys and is essential to describe
those asymmetric moving surfaces.

We now address the change of the statistics of the sur
fluctuations for very large fluctuations. The first point to r
mark is that though the Le´vy distributions are very common
in nature~for reviews, see@20,21#!, including the distribution
of step lengths in diffusive processes, studies of the den
distributions of particles performing anomalous diffusion a
very rare. Usually, only measurements of the variance of
particles positions are reported, not the particle density

FIG. 9. Time evolution of~a! them exponent and~b! the asym-
metry parameterj of the Lévy distribution that fits the central par
of the surface height fluctuation.
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tributions. To our knowledge, the only exception is the stu
of diffusion of a photoexcited electron-hole plasma in
semiconductor quantum well@22#. That paper shows that th
particle density obeys a Le´vy distribution withm51.3. The
asymmetry parameter isj50 or j'21 depending on
whether the quantum well is aligned or slightly tilted relati
to the crystallographic axes. One clear point is that, as
measured particles variance must be finite and the Le´vy dis-
tribution has an infinite variance, for very displaced particl
the density distribution cannot be of Le´vy type. In order to
avoid the unphysical infinite variance of the diffusive pa
ticles, Shlesingeret al. @23# introduced the process that the
called Lévy walk. The sites visited by the diffusive particl
in the Lévy walk are the same as in the Le´vy flight ~random
walk of Lévy type! but a time cost is imposed to the step
penalizing the long steps, such that the average step tim
infinite. For a Lévy walk, the variance of the particles pos
tions is finite and grows with time aŝr 2,t&}tg, with g
.1. As far as we know, the explicit form of the partic
density distribution has never been calculated for any s
cific Lévy walk, and a crossover from a Le´vy to a Gaussian
distribution, as we go from the center to the tails, cannot
ruled out.

VI. CONCLUSION

An atomistic model for etching of a crystalline solid
proposed, and simulations were done for one-dimensio
substrates, showing that the system scales according to
KPZ universality class. The imposition of periodic bounda
conditions~PBC! in the simulations does not affect the sca
ing properties of the system, except for the fact the timet3

5Ct3
La/b5Ct3

L3/2 required for the correlation length t

cover the substrate lengthL is reduced by a factor of 0.567
This means that the PBC makes the system effectiv
smaller by a factor of 0.68. However, the PBC changes
surface morphology. Simulations without PBC show that
fluctuations of the surface height, up to three standard de
tions, satisfy an asymmetric Le´vy distribution within the pre-
cision of the data, and only for fluctuations larger than th
standard deviations the fluctuation statistics becomes
proximately Gaussian. In contrast, simulations with PBC
sult in Gaussian surface height fluctuations, except for la
negative fluctuations. The fact that the boundary condit
may affect the short-range behavior, as manifested by
rms step size, is very surprising. Arguments are presen
suggesting rms, that the asymmetry in the surface fluc
tions is a necessary consequence of nonlinear terms onDh,
that are contained in the KPZ and other Langevin equati
proposed to describe growth erosion, because those te
make the surface not invariant under the symmetry opera
h→2h.
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