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Discrete atomistic model to simulate etching of a crystalline solid
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A discrete atomistic solid-on-solid model is proposed to describe dissolution of a crystalline solid by a
liquid. The model is based on the simple assumption that the probability per unit time of a unit cell being
removed is proportional to its exposed area. Numerical simulations in one dimension demonstrate that the
model has very good scaling properties. After removal of only abotitmi@nolayers, independently of the
substrate size, the etched surface shows almost time-independent short-range correlations and the receding
surface presents the Family-Vicsek scaling behavior. The scaling paramet€491+ 0.002 andB3=0.330
+0.001 indicate that the system belongs to the Kardar-Parisi-Zhang universality class. The imposition of
periodic boundary conditions on the simulations reduces the effective system size by a factor of 0.68 without
changing the exponents and 8. Surprisingly, the periodic condition changes drastically the statistics of the
surface height fluctuations and the short-range correlations. Without periodic conditions, that statistics is, up to
3 standard deviations, an asymmetricvizedistribution with x=1.82+0.01, and outside this region the
statistics is Gaussian. With periodic conditions, that statistics is Gaussian, except for large negative fluctua-
tions.
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I. INTRODUCTION Jh
EzvV2h+>\(Vh)2+ -+ v,V h+ k(V2h)(Vh)?

In the last 15 years there has been intensive research on
far from equilibrium moving surfacedl—3]. Those surfaces +.- +Kkj(V2kh)(Vh)Zj+ F+ n(r,t), 2
can be related to expanding fire, fluid flowing in a porous
media, growing bacteria colonies, growth of colloidal aggre-wheren, k, andj are positive integers; is the average par-
gates, epitaxial growth of crystalline solids on a flat sub-ticle flux on the substrate, ang(r,t) is an uncorrelated
strate, or etching of a crystalline solid by a liquid, a gas, anoise. This family of equations leads to the scaling expressed
plasma, or a bean of atomic iofeputtering, and others. Itis by Eq. (1), and the exponents and 8 depend on the coef-
well established that many of those moving surfaces havcients v, \, v,,, «, and xj, Which have a nonzero value;
self-affine morphologies with simple space and time scalinghe F and » terms are of course always present. Thus, each
properties. The morphology of the surface is more easilaquation of the family defines one universality class of mov-
described in the case of epitaxial growth on an initially flating surfaces, each family presenting well-defined values for
horizontal substrate of dimensionaliyand linear dimension  , and. The most important universality classes are defined
L. The vertical position of the grown film surface at the py the Edwards-WilkinsoEW) equation[5], which con-
horizontal coordinate, elapsed a time after the growth tains only theV2h surface tension term in Eq2), and the
start, ish(r,t). The roughness of the surface is measured byardar-Parisi-zhangkPZ) equation6] which also contains
the rms deviation of the surface height(L,t)=([h(r,t) the nonlinear termYh)2.
- h(t)]2>1’2, whereh(t) is the average film thickness. For a A very large number of discrete atomistic models for nu-
large class or growing systems, the roughness kinetics satisfyerical simulation of the moving surfaces has also been pro-

the Family-Vicsek scaling ansaf4] posed, and many of them demonstrated to present the
, Family-Vicsek scaling. Some of these are very simple mod-
w(L,t)=Lf(t/LYP), (1) els intended not to describe in detail any specific system, but

) o ) to demonstrate on a microscopic basis the generation of a
wheﬁre the functionf(u) has the limiting behaviorf(u)  gelf-affine moving surface. The most widely investigated
~u” for u<1 andf(u)=constant foru>1. Therefore, for  atomistic models are the ballistic depositiéBD) [7] and

_ / _ _ . " .
t<tc=Cy L, w=Cut#, and for t>t,, ws=Cy L%  extensions of the random deposition model, which allow par-

where the subscrip in w stands for saturated. ticle diffusion, as for example the Wolf-VillaiG//V) model
Theoretically, the growth kinetics has been widely de-[8] (for reviews, se¢l,2]). Those models present some char-
scribed by continuum Langevin equations of the type acteristics that limit their usefulness in the investigation of

surface morphology. The BD model generates films with va-

cancies and overhangs that create difficulties for the analysis
*Electronic addresses: bernardo@iccmp.br, fao@iccmp.brof the film; not only the film surface but also its body are
alaor@iccmp.br fractal systems, and it is also difficult to define univocally the
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film surface. The WV model belongs to the solid-on-solid of the cell’'s nearest neighbors amdis a model parameter.

models free from vacancies and overhangs. However, it iThis model emphasizes the dependence of the binding en-

known [9,10] that the generated films present anomalousergy of the cell with the number of nearest neighbors. The

scaling, in the sense that before the deposition of rather thickeferred model changes its universality class as the parameter

films [up to 1¢ monolayers(ML) for the d=1 casé, the  w varies and also present overhangs. A physically more re-

system does not satisfy the scaling law given by Hqg.  alistic model would be a combination of these two. However

Thus, calculation of the correei and 8 scaling exponents that hypothetical model would present the complicated scal-

requires simulation with very large substrates and the growtling properties arising from the expw) dependence. At the

of thick films. present stage of the investigation of growth dissolution pro-
In this paper we propose a simple atomistic model forcesses the emphasis still is on models with simple scaling

dissolution that mimics the etching of a crystalline solid by aproperties, in order to understand the most general laws gov-

liguid. The numerical simulations for tret=1 dimensional- erning those processes.

ity indicate that the model belongs to the KPZ universality The cellular automata algorithm that simulates this model

class. The calculations demonstrate that the model preserits

exceptionally good scaling properties. After a transient of (1) select randomly one horizontal site=1,2,...L at

only about 20 dissolved monolayers, independently of theliscrete instanT;

substrate sizé., the receding surface satisfies the Family- (2) hy(T+1)=h;(T)+1;

Vicsek scaling, and hence the scaling properties and the cor- (3) if h; _1(T)<h;(T) do h;_,(T+1)=h;(T);

rect scaling exponents can be obtained from calculations on (4) if h;1(T)<h;(T) doh;((T+21)=h;(T).

rather small substrates. When PBC is not imposed, i.e., in the case of NBC, the
We also investigated the statistics of the surface heighéxistence of the extern&bertica) exposed faces of the cells

fluctuations, expressed W(Ah;), whereAh; is the differ-  at the borders is ignored. In this case, step 3 is not executed

ence between the height at sitend the average heightt). ~ wheni=1 and step 4 is not executed whieaL. Therefore,

For t<t,=C, L*, P(Ah;) is a Gaussian distribution. the system acts as if the end vertical surfaces of the substrate

x were covered with a protection to avoid lateral etching. It

However, the statistics present a crossovet=at, . Fort i ) ;
>t,, P(Ah;) can be fitted, within the accuracy of the data must be noticed that the substrate is etched upwards, which
X ' ! "makes easier the analogy with the more widely studied

by an asymmetric [y distribution in the rather wide range N

|Ah;|<3wg and is approximately a Gaussian outside thatgrowth k|n<_et|cs.

range of fluctuations. We argue in this paper that this asym- Calculagons were perfo_rmt_ad up mZZOtX.' wher_et
metry in the surface fluctuation should be true for any modelzT/L’ which means deep inside the saturation regime, for

belonging to the KPZ universality class, as well as othelSUbStrate §izes = 128, 256, 512, 1.024’ 2048, 409.6’ gnd
classes in which nonlinear terms likévk)2 appear in 8192. Satisfactory data on the tails of the distributions

Eq. (2) P(Ah;) were obtained by performing simulations over, re-

The investigation ofP(Ah;) also uncovered the as yet spectively, X10F, 1.2<10°, 2.6x<1C°, 7.1x10%,

unnoticed fact that the morphology of the surface is sensitiv -6 182' 3.7X 18:’ and gSX102 suléftratesozor PBcogand
to the boundary conditions in quite a surprising way: for 9X10°, 1.5x10°, 3.2<10°, 7.1x10", 2107, 3.4 10",

surfaces simulated using periodic boundary condition&d 9<10” substrates for NBC. Calculations were also per-

(PBO) P(Ah;) is quite precisely a Gaussian distribution, ex- formed on a large substrate with dimensior 131072, in

cent for large neaative values ah. . As there is no physical e regimet<t, , to obtain a more precise determination of

P ge neg ' prys the exponenB. We used a long period><2x 10'®) random
valid the results obtained with nonperiodic boundary condi-nUmber generator of L’Ecuyer with Bays-Durham shuffle
tions (NBC). and added safeguardn?2 of Ref.[12]).

Il. MODEL AND SIMULATION IIl. SHORT-RANGE CORRELATIONS

The substrate is a square lattice with a one-dimensional Figure Xa) shows the time evolution of the average step
surface exposed to dissolution. The model states that thgize a(t)=(|h;(t)—h;_(t)|) and the rms step sizaJt)
probability per unit time of a unit cell being removed is =([hi(t)—h;_1(t) 1?2, for simulations with PBC and sev-
proportional to its number of free sides. This can be justifieceral substrate sizes. The figure shows that baft) and
by the fact that the number of collisions per unit time that thea,Jt) are almost independent of the substrate size and that
solvent molecules make with one cell is proportional to itsaftert~10? those two functions saturate at constant values.
exposed area. It is also supposed that the solution remaifihis means that the surface fluctuations quickly builds up
sufficiently diluted and hence readsorption is ignored. It musshort-range correlations that remain unchanged while pro-
be recognized that the model cannot accurately describe wegtessively the correlation length grows up with time until
etching because it ignores the fact that the energy necessdbgcoming equal td. This behavior is considered important
to remove a cell also depends on the number of free sidesfor the quick establishment of the Family-Vicsek scaling law

Another model for crystal dissolution had been proposed9-11,13. The average step size works as a natural unit for
[11] in which the probability per unit time of a cell being the surface height fluctuations, and afédt) saturates at a
removed is proportional to exp(w), wheren is the number  constant value, the function(r,t) is expected to satisfy a
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, | BNBC K i value is related to a change in the statistics of the surface
. et height fluctuation, which is initially Gaussian and later on
ozgaie becomes of Ley type. The true saturation af,,{t) only
‘ii‘ occurs att=t,, obtained as described in the next section.
L5 F K T This indicates that the absence of PBC allows some large
° . and rare big steps that affects the valueagf{(t) but have
4 . T e little influence ona(t), which is a signature of the \g
81t . _,.n‘“ a(®) J distribution of surface height fluctuations. Figure 2 shows the
v o 131075 . same data of Fig.(b) as a function of the reduced tiné
S 8192 - to show explicitly thata,,{(t) only saturates at=t, .
S 4096 - It is usually accepted that the Family-Vicsek behavior oc-
05 p" - %8‘2‘2 o curs only after the short-range correlation has been estab-
. 512 lished. However this is not true, as can be seen by comparing
' 256 - Fig. 1(b) and Fig. 3a). Those figures show that the Family-
0 . . \ \ 128 - Vicsek behavior starts when the step size reaches the pseu-
107 10° 100 102 10° 100 10° 10° dosaturation value. This happens because the transition from

the pseudosaturation value to saturation value occurs at the
same crossover tintg that governs the global behavior. The

FIG. 1. Step size measured byt) anda,{t) for simulations
with (a) periodic boundary conditions arid) nonperiodic boundary
conditions. The horizontal dotted line is the saturation value
(1.826+0.001) ofa,n for simulations with periodic boundary con-
dition.

boundary-condition influence in the small range correlation
is an unexpected result.

IV. SCALING LAWS

Figures 3a) and 3b) show in log-log plots the time evo-

dynamical equation like Eq2) in which the coefficients, lution of the surface roughnesg(L,t) for simulations with
\, v,, etc., are time independent. For comparison, in theNBC and PBC, respectively. A careful examination of those
WV model, a,,{t) depends on the substrate size andlfor figures shows that PBC results in earlier roughness satura-
>200 that step size remains increasing utwl10° [9]. tion, as compared to NBC. This occurs because the imposi-

Figure Xb) shows the same time evolution of the steption of PBC is in some sense equivalent to a reduction of the
sizes shown in Fig. (&), but for calculations with NBC. One substrate sizé. This can be clearly observed by comparison
sees that the time evolution af(t) is almost the same for of Figs. 3a) and 3b). The figures also show that the scaling
both kinds of boundary conditions. However, now the evo-behaviorw(L,t)=C,t? only applies fort>10 (etching of
lution of a,,{t) shows a distinct behavior. Its saturation about 20 ML. For a more precise determination 8f only
value is 16% higher than in the case of PBC, and besides thbe data of thé. =131 072 substrate were considered and the
saturation only occurs at later times. In fact, for large sub-obtained value was 0.3300.001. Figure 4 shows in a log-
strates, one can observe tl&g,(t) presents a pseudosatu- log plot the time evolution of the reduced widéi(L,t)/wq
ration at the same value observed for simulations with PBCwith the reduced timé/t,. , for simulations with NBC.
indicated in the figure by a dotted line, at the same time  Figure 5 shows in a log-log plot the variation with the
~10?, and later on gains a new step. As will be seen in Secsubstrate size of the saturated roughness, for simulations us-
V, the change o&,,{t) from the dotted line level to a higher ing both PBC and NBC. The exponent was calculated
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(b) PBC of Fig. 3@ and 3b) also show that the crossover tinig
errtrsred =CtXL“’5 is reduced by a factor of 0.567 when the PBC is
X:ii;::;““ imposed. Hence, we should expect that the imposition of
OO:EZZSNMM PBC implies a reduction of by a factor of 0.68, in very
o' e - good agreement with the factor of 0.68 previously obtained.
O Figure 6 shows in a log-log plot the structure factor
* S(k.t)=(h(k,h(= k1)), (3)
L
10° 8192 - 4 where
4096 - L
2048 = - — .
. 1024 o h(k,H)=L"Y2Y [h;(t)—h(1)]e'0"), (4)
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107! ! ! ! ! 128 for t>t,, and simulations with NBC. It is knowf1.0] that,
10t 100 100 102 100 100 10° 108 for this saturated regime,
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S(k,t)ock 279, 6)

FIG. 3. (a) Time dependence of the roughness of substrates with
nonperiodic boundary conditions. The straight line is the roughness However, for discrete systems with unit-cell siagthis
growth law obtained from the 131 072 substrate between tinfe 10relation cannot be valid for wave vectors close to the Bril-

and 1G. The power law is (1.3840.008)%330-0-001 (h) Same as
(a) for periodic boundary conditions.

from the slope of both curves in Fig. 5, using only the sub-

strates withL larger than 1000, with the results=0.4961
+0.0003 for PBC andv=0.491+0.002 for NBC. We point
out that the obtained values of and 8 are very close to
those calculated for thel=1 KPZ equation, namelyg
=1/2 andB=1/3. In fact, to our knowledge, this is the best

2

agreement with the KPZ equation ever obtained from an
atomic discrete model. This indicates that the present model
for wet etching belongs to the KPZ universality class. Figure
5 shows with more clarity the fact previously noticed that the
imposition of PBC implies the reduction of the effective sub-
strate size, as the two straight lines have almost the same
slope and therefore can be brought to coincideiscgerpo-

10 T
£10' 1
non-periodic  +
0 periodic  x
10 y 3 4
10 10 10
h

FIG. 5. Length dependence of saturated roughness. The power

sition) by a vertical translation. More explicitly, the line cor- |aw was obtained from the substrates larger thah For periodic
responding to simulation with NBC will coincide with that conditions it is (0.4746 0.0013).%4%6%0-0003 and for nonperiodic
corresponding to simulation with PBC if the correspondingit is (0.594+ 0.008)0-49%+0.002
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FIG. 6. Structure factor for different substrates, for simulations
with NBC. The results for simulations with PBC are visually not
very different. The solid line is a power law with exponent$.92
+0.02, fitted in the range 0.85k=<0.1. The dashed lines have
exponents—1.65+0.05 and was fitted to the three first points of
each curve, the upper far=4096.

louin zone boundarnkzg=m/a, in the present cas&,g
= . In fact, 9S(k,t)/k|_ ,=0, as can be observed in Fig. Ahfw,
6. The dashed lines in the figure are linear fittings of the

three smallest wave vectors of each curve. All these straigmO

Iln.es have the same slopey’=—1.65+ 0.05..C0mpar|ng simulations with periodic conditiongb) Same data ofa) in a
this with Eq. (5) for the cased=1, we obtaina=0.325  gonilog plot. The Gaussian distribution is obeyed in the whole
+0.025, in clear disagreement with the valueaobbtained  4nge of height fluctuations. However the probability of large nega-
from the scaling lawws=C,, L“. The solid line in Fig. 6 is  tive height fluctuations is clearly larger than the predictions of
a fit of the intermediate region of the curve, ignoring theGaussian distribution.

bending both at small values &fand very close td,g. Its

slope is— y=—1.92=0.02. With this value ofy we obtain  from these values one obtaiast+ o/ 8~2.1, which indicate
a=0.46+0.01, in reasonable agreement with the vatue that the system belongs to the KPZ universality class, in
=0.491+0.002 obtained from the Family-Vicsek scaling which holds the relatiomr+ «/8=2. Zhang[15] suggested
law. This confirms that for finite and discrete systems, thehat the large values ofr and 8 can be explained by an
law expressed by E@5) fails both for very smalk and fork  uncorrelated noise obeying a power-law probability distribu-
close to the zone boundary. The deviation for snkaik  tion P(#)~ '~ ¢, where»=1. Both numerical simulations
really a small-size effect, as can be seen from the examinand analytical resultsl5—17 gave support to this proposal.
tion of the figure; the larger the substrate, the smaller thgror d=1 films, the calculated values of the scaling expo-
value of k for which the curve deviates from the solid nents ard17] a=3/({+1), B=3/(2(—1), ({>2), anda
straight line. The reasonable agreement between the valuesg=2/7, (;<2).

of a determined by those two distinct methods is an inde- We made extensive analysis of the probability distribution
pendent indication that the present model does not presegf the surface height fluctuations for the saturated regime

FIG. 7. (a) Distribution of the saturated surface height fluctua-
n expressed in reduced substrate-size-independent units, for

anomalous scalinfl0]. >t, . One important conclusion is th&(Ah;) is sensitive
to the boundary conditions. Figurday and 7b) shows, in

V. STATISTICS OF THE SURFACE HEIGHT Imear and semilog plots, respectlveIE’[Ah/y\(S(L)] as a
FLUCTUATIONS function of Ah/wg(L) (note that the subscrigtin h; was

omitted in the saturated regime for the simulation with PBC.
As compared to the very intensive investigation of theThe distributions for all sample sizes fall onto the same uni-
scaling behavior of the moving surface, there has been veryersal curve that can be fitted quite precisely with a Gauss-
little study of the fluctuations of the surface height. In fact,ian, except for large negativAh. Figures 8) and §b)
the existing studies were motivated by experiments demonshow the same as Figs(af and 7b) for samples simulated
strating very large values af and 8. Experiments on fluid with NBC. It is immediately clear that, in contrast with what
flow in porous medid14] give «~0.81 andB~0.625, and happens with the samples simulated with PBC, now the sur-
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04 T T T - T As the fractional diffusion equation just described is pre-
035 | (@NBC | dicted to hold in a fractal system, and that is the case of the
moving etched surface, we speculate that it can describe the
0.3 L i evolution of the stochastic variableh;(t) in the continuum
~.025 | 8192 . limit. The time variable that appears in Eq8) and (7) ob-
§ o2 | 4096 i viously does not have any meaning in the analysis of the
§ %8‘2‘2 surface height fluctuation fars>t, . Hence, we tried to fit
015 - “595 T the distributions shown in Figs(& and &b) with the asym-
01 b gg : - metric Levy distribution
0.05 | Lévy —— . A (o
_ P(x)= ;Jo cog k(X—Xo) + C&kH tan( um/2)]

X exp(— Ck#)dk, (8)

where é&=(D,—D,)/(D,+D,) and x=Ah/wg. Figure &a)
shows the result of this fitting for the data plotted in linear
scales. The fitting curve is a solid line completely covered by
the simulated data, which suggests a very good fitting. How-
ever, when the same data are exposed in a semilog plot, as
shown in Fig. 8b), it becomes clear that the i distribu-
i tion deviates from the data outside the regjdr/wg > 3.
The dashed lines shown in both Figga8and 8b) are the
4 best fit using a Gaussian. One can see that the distant tails of
the data distribution can be approximately fitted by a Gauss-
ian distribution. In fact, in order to have really good agree-
ment, we had to use two distinct Gauss functions, one for
each tail, but this fitting is not shown and is not relevant in
FIG. 8. (a) Distribution of the saturated surface height fluctua- OUr analysis. We conclude that the not-too-lafgp to three
tion expressed in reduced substrate-size-independent units, fétandard deviationsvg) surface fluctuations can be de-
simulations without periodic conditiongb) Same data ofa) in a  scribed, within the accuracy of the data, by an asymmetric
semilog plot. The height fluctuations follow an asymmetriorg.e Lévy distribution, whereas the very large surface fluctuations
distribution for|Ah/w¢|<3, and an approximately Gaussian distri- follow a Gaussian distribution. The fitting parameters of the
bution outside this range. The parameters of theyldistribution  Lévy distribution areu=1.82+0.01 andé=0.80+0.05.
are u=1.82+0.01 andé= —0.80+0.05. Figures 9a) and 9b) show, respectively, the time evolu-
tion of the parameterg and ¢ as the etching progresses. At
face height distributions fall onto the same universal asymthe beginningu~2, which means that the surface fluctua-
metric curve. That asymmetry demonstrates that the heighfons are Gaussian. This explains why the values,gf(t)
fluctuations do not follow a Gaussian distribution. That is ahave the same behavior at early times for both PBC and
main result of this paper and will be discussed in some deNBC, as can be seen comparing Fig&)land ib). For u
tail. very close to 2, the Ly distribution is almost insensitive to
Recently[18], it was shown that a fractional diffusion the value of, and consequently the values of this asymme-
equation (involving fractional derivativesdy=ad*/ox*, w try parameter at early times are very imprecise.

fractionary in an asymmetric medium,dn/dt=(D,d We argue that, for any moving active surface belonging to
+D,d*,)n/2, leads to a particle distribution, which in one the KPZ universality class, the surface height fluctuations
dimension is expressed by must have an asymmetric distribution. In fact, owing to the

nonlinearA (Vh)? term in Eq.(2), the symmetry of the sur-
face under the transformatidn— — h is broken. This means
that the positive Ah>0) and negativeAh<0) fluctuations
of the surface height are statistically differentAl£=0, that
where the characteristic function is surface symmetry is recovered; hence, the positive and nega-
tive fluctuations of the surface height become statistically
|| T equivalent, and the distributio®(Ah/wy) is expected to be-
p(k,t)zex;{T(DﬁrD,)cos(,uEH come symmetric, either by a symmetric uedistribution
. (D,=D,) or a Gaussian. On passing, it is opportune to re-
Xexp{ik |k~ |(D _D )sin( z)t ) mark that the Gaussian and\hedistributions are the only
2 ' r YR invariants of the renormalization-group transformation of the
random-walk distribution$19]. Thus, we conclude that the
with 1<u<2. This is an asymmetric vy distribution. moving surfaces belonging to the EW universality class must

oo

1 .
P(x,t)= Zp(k,t)e"‘xdk, (6)

—o0
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tributions. To our knowledge, the only exception is the study
of diffusion of a photoexcited electron-hole plasma in a
semiconductor quantum weR2]. That paper shows that the
particle density obeys a’lg distribution with x=1.3. The
asymmetry parameter i§=0 or ¢é~—1 depending on
whether the quantum well is aligned or slightly tilted relative
to the crystallographic axes. One clear point is that, as the
measured particles variance must be finite and they loés-
tribution has an infinite variance, for very displaced particles,
the density distribution cannot be of wetype. In order to
avoid the unphysical infinite variance of the diffusive par-
ticles, Shlesingeet al. [23] introduced the process that they
called Lavy walk. The sites visited by the diffusive particle
in the Levy walk are the same as in the \neflight (random
walk of Levy type) but a time cost is imposed to the steps,
penalizing the long steps, such that the average step time is
infinite. For a Lary walk, the variance of the particles posi-
tions is finite and grows with time a&?t)t?, with y

>1. As far as we know, the explicit form of the particle
density distribution has never been calculated for any spe-
cific Lévy walk, and a crossover from a &g to a Gaussian
distribution, as we go from the center to the tails, cannot be
ruled out.

VI. CONCLUSION

An atomistic model for etching of a crystalline solid is
proposed, and simulations were done for one-dimensional
substrates, showing that the system scales according to the
KPZ universality class. The imposition of periodic boundary
conditions(PBCQ) in the simulations does not affect the scal-
ing properties of the system, except for the fact the tige
=C, L*F=C, L% required for the correlation length to

cover the substrate lengthis reduced by a factor of 0.567.
This means that the PBC makes the system effectively
smaller by a factor of 0.68. However, the PBC changes the
surface morphology. Simulations without PBC show that the
fluctuations of the surface height, up to three standard devia-
tions, satisfy an asymmetric i distribution within the pre-
cision of the data, and only for fluctuations larger than three

show symmetric distribution of heights fluctuation. Physi-standard deviations the fluctuation statistics becomes ap-
cally, it seems that symmetric surfaces, in which the hills argoroximately Gaussian. In contrast, simulations with PBC re-
statistically similar to the valleys, can be obtained only undessult in Gaussian surface height fluctuations, except for large
very special conditions of growth or erosion. One example ohegative fluctuations. The fact that the boundary condition
a very asymmetric surface is that obtained by polishing amay affect the short-range behavior, as manifested by the
solid with grinding powder: the polished surface presentyms step size, is very surprising. Arguments are presented
valleys caused by scratches but not the analogous hills. Theuggesting rms, that the asymmetry in the surface fluctua-
nonlinear term ¥h)? in the KPZ equation is what distin- tions is a necessary consequence of nonlinear termshon
guishes hills from valleys and is essential to describe althat are contained in the KPZ and other Langevin equations
those asymmetric moving surfaces.

We now address the change of the statistics of the surfag@ake the surface not invariant under the symmetry operation
fluctuations for very large fluctuations. The first point to re-h— —h.

proposed to describe growth erosion, because those terms

mark is that though the lvy distributions are very common

in nature(for reviews, se¢20,21)), including the distribution

of step lengths in diffusive processes, studies of the density
distributions of particles performing anomalous diffusion are
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